

Why are sound booths needed?

- To test sound field thresholds for normal hearing people
- · Controlled, but don't replicate the real world
- At a cost of \$75k, they are a very expensive way to test threshold of normal hearing people
- · Some people find booths to be claustrophobiainducing at best
- Yet...much of our counseling happens in these same booths
- Is there a better, more efficient and patient-friendly way to test auditory threshold?

Children's

One Solution: Circumaural Earphones

- · More comfortable for patients
- · Easily placed by assistants
- · Better sound isolation
- Avoids ear canal collapse
- · Prevents low frequency leaks
- Fewer calibration issues (TM perforations)
- · Allows extended high frequency testing

Speech in Noise Tests

- · Still rarely used in audiologic assessment
- Yet.....hearing in noise is main patient complaint
- · Patients with "normal hearing" may also complain of listening problems in noise
- Traditional speech recognition tests have ceiling effects, high variability and poor prediction of functional outcomes
- · Adaptive tests in noise don't require sound booth, can simulate head related transfer function; better prediction of functional outcomes

LiSN-S Test

- 1. Adaptive speech-in-noise
- 2. Target: sentences (designed for children and adults)
- 3. Competing speech: looped children's stories
- 4. 3-D auditory environment under headphones
 - Sennheiser HD 215 headphones

Summary – EHF & LiD About 30% of children aged 6-12 years with listening difficulties (aka APD) have hearing loss above 8 kHz Hearing acuity above 8 kHz is related to some aspects of challenging speech perception in competing spatial conditions (shown in older adults: Besser et al., 2015) Hearing acuity above 8 kHz is related to a history of OME, PE tubes and speech-language difficulties Both top-down and bottom-up mechanisms should be considered in LiD or APD

Questions	Parent Report	Patient Report
Concerns with Hearing	3/6 (50%)	3/12 (25%)
Tinnitus	2/6 (33%)	5/12 (42%)
Balance Issues	1/6	5/12 (42%)
History of OM	2/6	4/12 (33%)
PE Tubes	1/6	1/12
Childhood HL	0/6	1/12
Past Hearing Test	6/6	9/12

Preliminary Findings

- The rate of hearing loss among teen IV-AG histories in the CCHMC cohort is high, especially for high frequency hearing.
- Based on previous reports, these hearing losses will increase over time into adulthood.
- The functional impact is hearing speech in noise, such as in the classroom.
- Expanded study is planned with R01 submission to NIH.

