

New Technologies

- CE-CHIRPS
- ABR F_{mp} Noise and Signal Detection
- Bayesian Weighting
- Wide Band Tympanometry
- Next Generation ASSR

Next Generation ASSR is the main topic of our study

 to compare the <u>time</u> needed to complete an assessment with both techniques. Hypothesis: ASSR will reduce test time over ABR by ½ or more.

The CE-Chirp

- Stimulus that <u>reorganizes timing of spectral components</u> to synchronize cochlear response.
- CE-Chirps are of the <u>same energy and frequency composition</u> as traditional stimuli- clicks and tone bursts.
- Produces neural response (ABR, ASSR,...) with <u>up to 2X amplitude of</u> traditional stimuli
- Greater amplitude enhances response detection
- Reduces time to automated detection
- Lowers threshold of response detection and reduces correction factors
 SEE HANDOUTS 5

How are ASSR and ABR Alike, Different?

- ABR and ASSR both look at the same brainstem neural activity.
- ASSR modulates the stimulus at a known frequency.
- Response detection then searches for evidence of that frequency in the ongoing EEG.
- If the neurons are activated by the stimulus, there will be a spike in the frequency response of the EEG at the modulation frequency and the phase of the EEG will be synchronized with the stimulus onset.

How is the "Next Generation" ASSR Different than the First Generation??

- Next Generation uses BOTH amplitude and phase information for detection.
- Next Generation uses the fundamental and 20+ harmonics for response detection.
- Next Generation ASSR uses Narrow Band CE-Chirps.

ABR Protocol-- Testing

- Establish Threshold for BB CE-Chirp LS in each ear before Frequency-Specific testing (ASSR or ABR).
- Order of frequency presentation or ear is at the discretion of the tester.
- Begin the threshold search just above the BB Chirp threshold.
- Test each level once unless special circumstances.
- If a response to level X is fast (800-1200 sweeps) and response large (>100 nV) use a large descending step size (20 or greater)

2/4/2018

ASSR Protocol

- Default is 4 frequencies per ear all running simultaneously.
- Starting Level is determined by tester, can be individually chosen.
- Each frequency has a unique modulation frequency that is close to 90 Hz.
- Background noise and response detection criteria are automatically updated for each frequency/ear.
- New stimulus level can be implemented for any of the eight conditions at any time. The others continue to run.

ASSR Protocol

- Noise rejection level is set to 40 nV.
- Insert ER3-A Earphones used.
- Test will stop at 95% confidence of response or 6 minutes.
- Test time can be extended for any particular condition if needed.
- YS stopping rule. If detection is at or below 50% and noise is <= 15 nV, the test can be stopped by the user as a no response.
- Test levels are determined as with ABR with concentration on test speed. A response met quickly warrants a large decrease

RESULTS SUMMARY

- Next Gen ASSR Thresholds are NOT equivalent to ABR except at 4k Hz. They are lower. This is due to advances in detection technology.
- Average test time difference shows ASSR is faster by 12.5 minutes (for 4 frequencies in each ear).
- Using our protocol, both ABR @ 32.14 and ASSR @ 19.63 minutes are quite fast and feasible for non-sedated infants. The CE-Chirp stimuli is responsible for some of the increased test speed.

2672

- 3-months-old at time of study visit
 3rd ABR evaluation at CCHMC
- Failed NBHS in both ears
- Full-term birth via emergency c-section due to failure of labor progression
- No known risk factors for hearing loss
- At 3 weeks: Mild SNHL, normal tymps, absent DPs, ? Air bone gap?
- At 7 weeks: Mild Conductive Loss, ? Bone, Neg Pressure tymps

2672: 5-months-old

- MRI Completed
 - Bilateral mild bulbous appearance of the vestibules and mild enlargement of the endolymphatic ducts/sacs
 - Probably incomplete partitioning of the middle/apical turns of the cochlea
 - Mild left modiolus deficiency
- ENT Ordered OtoSeq Genetics Testing
 - 2 mutations in SLC26A4 gene \rightarrow Pendred syndome

