Zen and art of vocal mechanics: Unilateral Vocal Fold Paralysis

Julie Barkmeier-Kraemer, Ph.D.
Professor, Division of Otolaryngology
Clinic Director, Voice Disorders Center
Email: JulieB.Kraemer@utah.edu

Background on the title of the talk

“You look at where you’re going and where you are and it never makes much sense, but then you look back at where you’ve been and a pattern seems to emerge. And if you project forward from that pattern, then sometimes you can come up with something.”

—Robert M. Pirsig
Roadmap of Talk

- Review of laryngeal anatomy/physiology
- Vocal Fold Paralysis/Paresis: Background
 - Epidemiology
 - Etiologies
 - Clinical Characteristics
- Recurrent laryngeal nerve (RLN) research
 - What is so interesting about the nerve packaging?
 - The relationship between the RLN and aorta

To Respond to Polls:

- TEXT:
 - Text to 37607 with message: “JBARKMEIERKR678”
 - TEXT YOUR RESPONSES
- WEBSITE ACCESS:
 - PollEv.com/jbarkmeierkr678

Review of Laryngeal Anatomy/Physiology

Image taken from: http://ranzcrpart1.wikia.com/wiki/Larynx:Intrinsic_muscles

TEST POLL

Janessa Humbert and Emily Plewman authored a book named Critical Thinking and the Art of Motorcycle Maintenance:

Critical Thinking in Dysphagia Management: Review of the RLN

- Posterior cricoarytenoid muscle
- Thyroarytenoid muscle
- Interarytenoid muscle
- Lateral cricoarytenoid muscle
- Cricothyroid muscle

All of the following laryngeal muscles adduct the vocal folds EXCEPT:
- Posterior cricoarytenoid
- Thyroarytenoid
- Interarytenoid
- Lateral cricoarytenoid
- Cricothyroid

When this laryngeal muscle contracts, the vocal folds shorten:
- Posterior cricoarytenoid muscle
- Thyroarytenoid muscle
- Interarytenoid muscle
- Lateral cricoarytenoid muscle
- Cricothyroid muscle
Roadmap of Talk

Review of laryngeal anatomy/physiology

Vocal Fold Paralysis/Paresis: Background
- Epidemiology
- Etiologies
- Clinical Characteristics

Recurrent laryngeal nerve (RLN) research
- What is so interesting about the nerve packaging?
- The relationship between the RLN and aorta

Vocal Fold Paralysis/Paresis (VFP)

- Occurs when some or all of the intrinsic laryngeal muscles cannot contract resulting in impaired vocal fold movement

Example of Unilateral Vocal Fold Paralysis/Paresis

What is the difference between paralysis and paresis?

PARALYSIS
- Impaired neuromotor function of the larynx resulting in:
 - Absent or severely reduced laryngeal muscle fiber innervation/activation indicated by
 - Absent movement of the arytenoid cartilage(s)
 - Flaccidity in tone

PARESIS
- Impaired neuromotor function of the larynx resulting in:
 - Reduced laryngeal muscle fiber innervation/activation indicated by
 - Reduced mobility of the arytenoid cartilages
 - Observe LEFT-RIGHT Vocal Fold Asymmetry, and
 - Incomplete Glottic Closure

Laryngeal EMG required for conclusive diagnosis

Vocal fold Paralysis/Paresis

- Voice Disorders affect 30% of U.S. adults (Roy, Merrill, Gray, Smith, 2005)
- 1% of those seen for laryngeal problems have laryngeal paralysis
 - Similar to proportion of those diagnosed with laryngeal cancer (1.2% of laryngeal disorders) (Cohen, Kim, Roy, Arche, & Courey, 2012)

https://www.bcm.edu/healthcare/care-centers/otolaryngology/conditions/vocal-fold-paralysis
Etiologies

- **Surgical (iatrogenic)**
 - Cut nerve
 - Retraction of nerve (stretch & reduced tissue diameter)
 - Post-surgical edema -> ischemia/compression
- **Neoplasms**
 - Tumor(s) that compress against or invade the laryngeal nerve(s)
- **Idiopathic**
 - Depending upon clinical cohort, attributed to up to 42% of vocal fold paralysis population
 - More frequently associated with those beyond age 45 years

Vocal Fold Paralysis in Pediatric Populations

- Comprises 10% of all congenital laryngeal lesions
- Idiopathic = 36-47% (one of the top “causes”)
- CNS etiology = 25-35% (typically brainstem level)
- Cardiothoracic surgery
 - Patent Ductus Arteriosus (PDA) Ligation Surgery
 - 8.8% incidence overall (Zbar et al, 1996)
 - 25% incidence in infants < 2kg (Smith et al, 2009)
- Cardiothoracic anomalies

Endoscopic Imaging Clinical Characteristics

1. **Impaired mobility of one or both vocal folds**
 - Immobile vocal fold may appear shortened compared to the other fold.
2. **Incomplete glottal closure**
 - Longer open phase during vocal fold vibration (stroboscopy)
 - Incomplete closure of the vocal folds
 - Mobile vocal fold may cross midline of the larynx to contact the immobile fold
3. **Presence of supraglottic activity**
 - Increased voicing effort
 - Increased engagement of extrinsic and supplemetary laryngeal musculature

Adapted from presentation by Sheila Stager, PhD. Current Assessment of Vocal Fold Paralysis in Pediatric Populations, presented at the 2014 Annual American Speech-Language-Hearing Association, Orlando, FL.

Auditory-Perceptual and Case Report Clinical Characteristics

Signs of Vocal Fold Paralysis

- Stridor
- Breathy-rough voice quality
- Run out of air quickly while talking
 - Inappropiate phrase breaks
 - Report breathing problems associated with talking
- Difficulty projecting voice
- Weak cough
- Coughing/choking
 - During the swallow with liquids
 - After the swallow with solids
- Recurrent pneumonia or upper respiratory infections since onset
- Impaired laryngeal articulation clarity

Clarity of Laryngeal Articulation

The ability to clearly articulate between:

- A word ending with a vowel (or sometimes ending with /t/ or /n/) and
- The following word that begins with a vowel – also known as inserting glottal stops

“We eat eggs every Easter” vs “We were away a year ago”

Adapted from presentation by Sheila Stager, PhD. Current Assessment of Vocal Fold Paralysis in Pediatric Populations, presented at the 2014 Annual American Speech-Language-Hearing Association, Orlando, FL.

Laryngeal Clarity

- Only voice disorders with RLN injury demonstrate poor laryngeal clarity
- Approximately 65% of those with RLN exhibit poor clarity
- Poor laryngeal clarity is also associated with poor quality cough production
- In patients more than a year post onset, laryngeal clarity is often good; if not, it is evidence of continued nerve injury

Adapted from presentation by Sheila Stager, PhD. Current Assessment of Vocal Fold Paralysis in Pediatric Populations, presented at the 2014 Annual American Speech-Language-Hearing Association, Orlando, FL.
Good Laryngeal Clarity

Courtesy of Sheila Stager, PhD, Current Assessment of Vocal Fold Paresis Patients, presented at the 2014 Annual American Speech-Language-Hearing Association, Orlando, FL.

Poor Laryngeal Clarity

Courtesy of Sheila Stager, PhD, Current Assessment of Vocal Fold Paresis Patients, presented at the 2014 Annual American Speech-Language-Hearing Association, Orlando, FL.

Determining the Site of Lesion

- Lesions can occur at any point along the vagus nerve from the brainstem to the musculature.
- Symptoms/signs help determine location

Taken from: https://12cranialnerves.wordpress.com/cranial-nerve-10-vagus-nerve/

Site of Lesion and Clinical Signs

- **Pharyngeal plexus**
 - Hypernasal resonance, nasal emission during speech
- **Superior laryngeal nerve (SLN)**
 - Impaired pitch range
 - Diagonal glottal angle with upward pitch glide
 - Laryngeal penetration without protective airway response
- **Recurrent laryngeal nerve (RLN)**
 - Excessive breathiness, reduced ability to project the voice, irregular vocal fold vibration, silent aspiration

Taken from: https://12cranialnerves.wordpress.com/cranial-nerve-10-vagus-nerve/

Clinical Presentation of impaired SLN

- Bilateral vocal fold mobility
- Diagonal glottal angle during approximation (“twisting of larynx”)
- Reduced pitch range
- Reduced laryngeal sensitivity to secretions and other food boluses
- Represent a small proportion (~5%) (Stager, 2014)

Abelson & Tucker, 1981

Glottal angle as indication of SLN damage

Left CT Thyroid fixed
Left CT Cricoid fixed
Thyroid rotates to paralyzed side
Cricoid rotates to paralyzed side

Abelson & Tucker, 1981
Case Examples

Normal Laryngeal Function

Vocal Fold Paresis

Case History:
- 57 yo female
- Gradual 6-8 month onset of a rough, hoarse voice quality.
- No report of swallowing or breathing problems.
- Voice is 35% of normal.

Surgical History:
- Anterior Cervical Disc Fusion (ACDF) 22 years ago
- Thyroidectomy 2 years prior
- No reported voice changes after either

Occupation: Supervisory role for a commercial corporation requiring personnel and phone voice use.

Nasoendoscopic Exam

Left-sided Unilateral Vocal Fold Paralysis

Nasoendoscopic Exam

Speech Assessment

Paragraph sample
Sustained "ah"
Sustained "ee"
Throat clear

Case History:
42 yo male with onset of left UVP s/p dissection of aortic aneurysm 3 months earlier. Treated with Cymetra injection to medialize immobile vocal fold. No swallowing or breathing issues.

Flexible Endoscopic Evaluation of Swallowing

Case History
- 72 yo female with left CP angle tumor s/p excision
- CNs V, VI, VII, X, XI, and XII were reportedly intact at the time of surgery
- CN IX showed tumor invasion
- Breathy voice and dysphagia s/p surgery
- FEES Findings
 - Impaired pharyngeal clearance with left > right
 - Left Unilateral Vocal Fold Paralysis (UVP)

Bilateral Vocal Fold Paralysis

Case Example
Spontaneous Recovery

• **PEDIATRIC POPULATIONS:** 16-64% recover between 6 weeks – 5 years post onset (Strychowsky et al, 2014)

• **ADULT POPULATIONS:**
 Depending upon the etiology, 6% - 52% within 6-9 months post onset (Sulica, 2008; Mau et al, 2017)

Spontaneous Recovery Issues

“Recovery” is loosely defined across cohort studies:

Laryngeal muscle activity vs. Laryngeal function

– Laryngeal muscle activity often = SYNKINESIS (Blitzer et al, 1996; Sanuki et al, 2014)

– Laryngeal function in these individuals is abnormal
 • In adults, UVP associated with 2nd highest VHI scores of all voice disorders (Avg = 68/120, ranging 65-71) (Bielamowicz & Stager, 2006)
 • In adults, 38% exhibited aspiration & pharyngeal weakness (Domer et al, 2014)

Roadmap of Talk

- Review of laryngeal anatomy/physiology
- Vocal Fold Paralysis/Paresis: Background
 – Epidemiology
 – Etiologies
 – Clinical Characteristics
- Recurrent laryngeal nerve (RLN) research
 – What is so interesting about the nerve packaging?
 – The relationship between the RLN and aorta

What is so interesting about the RLN packaging?

“Some things you miss because they’re so tiny you overlook them. But some things you don’t see because they’re so huge.”

-Robert M Pirsig

Unilateral Vocal Fold Paralysis Asymmetry

• ~2/3 of Unilateral vocal fold paralysis involves the left recurrent laryngeal nerve (RLN).

Etiologies of RLN Dysfunction

• Trauma (e.g. post-surgery)
 – Thyroid surgery
 – Cardiothoracic surgery
 – Anterior Cervical Neck Fusion
 – Esophagotomy
 – Lung surgery

• Neoplasm

• Aortic Aneurysm

• “Idiopathic”
Connective Tissues of Peripheral Nerves

The RLN differs in connective tissue quantity and composition between the thorax and neck regions.

Nerve Connective Tissues

Piglet nerves (N=8) were homogenous along their length.

No differences were found in Epineurium amount or composition.

Funded by NIH R01 DC05422, Connective Tissues as a Factor in Vocal Fold Paralysis.

Developmental changes in the connective tissues of the porcine recurrent laryngeal nerve

- Piglet nerves (N=8) were homogenous along their length.
- No differences were found in Epineurium amount or composition.

The RLN differs in connective tissue quantity and composition between the thorax and neck regions.
Developmental changes in the connective tissues of the porcine recurrent laryngeal nerve

Juvenile pig (N = 10) left RLN showed significant differences:
• Collagen: Thorax > Neck
• Adipose: Thorax < Neck
• Fascicles: Thorax > Neck (right and left RLN)

BIOMECHANICAL DIFFERENCES (McMullen et al., 2014)
• YOUNG vs OLD:
 – Piglet RLNs > stiffness at lower strain levels than Older Pigs
• LEFT RLN vs RIGHT RLN in OLDER PIGS
 – Left RLN > stiffness than right RLN
• LEFT RLN DIFFERS BETWEEN PROXIMAL AND DISTAL REGIONS:
 – Thorax > Neck:
 • Stiffness
 • Fiber alignment suggests complex loading at aorta

The Relationship Between the RLN and Aorta

Idiopathic Etiology?

• Viral etiology
• RLN cell body apoptosis
• Age-related changes?
 – Connective Tissues
 – Vascular

Background on the title of the talk

“The number of rational hypotheses that can explain any given phenomenon is infinite.”

-Robert M Pirsig
The nervous system develops alongside the vascular system. The vascular development is crucial for the development of the nervous system, as the two systems interact during embryonic development. Unhealthy blood vessels may contribute to neurodegenerative conditions.

Development of major blood vessels

- **Aortic Arch (Vascular) Age-Related Changes**
 - Compliance decreases with aging > 10 years of age
 - (Jang et al, 1994; Larea et al, 1994)
 - Ortner’s Syndrome and onset of left-sided UVP associated with aneurysm
 - (Subramaniam et al, 2011; Zangirolami et al, 2015)

A computational study of the role of the aortic arch in idiopathic unilateral vocal-fold paralysis

Modeling using human and pig data and one gated-MR of aortic arch in a human:

- Model of mechanical strain levels imposed on the RLN by the aorta (6-16%) could potentially contribute to impaired function.

Groups

- Left-sided idiopathic UVP
- Age-Gender-matched Controls

Characteristics

- N = 10 in each group (7 males, 13 females total)
- 2 additional subjects excluded due to imaging noise
- Average age = 53 years (Ranged from 26-82 years)
Clinical Research Methodology

- Ungated and gated structural 1.5T MRI scans of the thoracic aortic arch
- Electrocardiogram (ECG)-gating
 - Diastole
 - Systole
- Blood pressure measures in supine

Age-related changes to blood vessels as possible idiopathic etiology

Future Directions: RLN and Vascular Interactions

- Investigate the causal association between idiopathic UVP and:
 - Aortic arch compliance
 - Biomechanical testing using pig model
 - Degree of compliance
 - Duration or cyclic rate factors
 - Simulate agents potentially causing changes in vessel wall (e.g. proteases)
 - Co-morbidities predictive of vascular compliance changes
 - Compression of the RLN between the aortic arch and pulmonary artery in individuals with hypertension

Research Findings Summary

1. RLN connective tissue quantity and composition differs with aging and between its locations in the neck and thorax regions.
2. The RLN shows biomechanical characteristics predicted by anatomical connective tissue composition and quantity differences.
3. Individuals diagnosed with left-sided idiopathic vocal fold paralysis demonstrated greater compliance than age- and gender-matched controls.

Acknowledgments

- Co-Investigators
 - Jonathan Vande Geest, PhD
 - Nathaniel McMullen, PhD
 - Andrew Bierhals, MD
- Consultants
 - Julia Edgar, PhD
 - Randal Paniello, MD
 - Gayle Woodson, MD
 - Mark Borgstrom, PhD
- Research Coordinators
 - Guowei Xia, PhD
 - Eileen Jacobs, RT
 - Steve Tinling, PhD
- Student Research Assistants
 - Reza Behkam, MS
 - Megan Williams, PhD
 - Robin Samlan, PhD
 - Michelle Ciucci, PhD
 - Kang Li, PhD
 - Ellen Campbell, MS, CCC-SLP
 - Rebecca Volk, MS, CCC-SLP
 - Amy Lederle, MS, CCC-SLP
 - Marissa McCrae, MS, CCC-SLP
- Willed Body Program
 - Kerry Peterson
 - Joshua Lopez
REFERENCES

